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Abstract
Understanding spatial population structure and biocomplexity is critical for de-
termining a species’ resilience to environmental and anthropogenic perturbations. 
However, integrated population models (IPMs) used to develop management ad-
vice for harvested populations have been slow to incorporate spatial dynamics. 
Therefore, limited research has been devoted to understanding the reliability of 
movement parameter estimation in spatial population models, especially for spatially 
dynamic marine fish populations. We implemented a spatial simulation–estimation 
framework that emulated a generic marine fish metapopulation to explore the im-
pact of ontogenetic movement and climate-induced distributional shifts between 
two populations. The robustness of spatially stratified IPMs was explored across a 
range of movement parametrizations, including ignoring connectivity or estimating 
movement with various levels of complexity. Ignoring connectivity was detrimental 
to accurate estimation of population-specific biomass, while implementing spatial 
IPMs with intermediate levels of complexity (e.g. estimating movement in two-year 
and two-age blocks) performed best when no a priori information about underlying 
movement was available. One-way distributional shifts mimicking climate-induced 
poleward migrations presented the greatest estimation difficulties, but the incor-
poration of auxiliary information on connectivity (e.g. tag-recapture data) reduced 
bias. The continued development of spatially stratified modelling approaches should 
allow harvested resources to be better utilized without increased risk. Additionally, 
expanded collection and incorporation of unique spatially explicit data will enhance 
the robustness of IPMs in the future.
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1  | INTRODUC TION

Animal movement is a fundamental response to internal and ex-
ternal stimuli (e.g. foraging behaviour, spawning migrations or 
predator avoidance) that create a heterogeneous mosaic of habitat 
occupation across land- and seascapes (Allen & Singh, 2016; Jeltsch 
et al., 2013). Movement ecology research has led to breakthroughs 
in understanding an organism's motivation, capacity and cues for un-
dergoing movement (Nathan et al., 2008). However, developing ef-
fective wildlife conservation strategies requires understanding the 
spatial ecology of the species (e.g. the spatiotemporal distribution 
of population productivity and abundance; Ciannelli et  al.,  2013). 
Upscaling from individual movements to population-level infer-
ences of migration and habitat usage can create resolution issues 
and computational challenges (Bocedi, Pe’er, Heikkinen, Matsinos, & 
Travis, 2012; Jeltsch et al., 2013). Conversely, modelling population-
level spatial dynamics avoids some of the parametrization issues 
associated with individual-based modelling frameworks and allows 
parameter estimation with relatively coarse data (e.g. typical har-
vest data; Chandler & Clark,  2014), but scaling issues may still be 
present when attempting to model population-level dynamics based 
on inferences from observations of individuals (e.g. a tagged animal; 
Plard, Fay, Kery, Cohas, & Schaub, 2019).

Integrated population models (IPMs) provide a unified estima-
tion framework where population parameters can be estimated 
through incorporation of a variety of observed data sets and ana-
lytical submodels by utilizing a single, combined likelihood function 
(Maunder & Punt, 2013; Zipkin & Saunders, 2018). Spatially explicit 
IPMs are becoming increasingly common (e.g. Regehr, Hostetter, 
Wilson, Rode, & St. Martin, M., and Converse, S.J., 2018), because 
they can incorporate myriad data sources (e.g. count and tag-
ging data) to help estimate population-scale movement dynamics. 
Additionally, spatially explicit IPMs can match the geographic scale 
of each data set, instead of assuming that a local scale study re-
flects the dynamics across the entire species distribution (Chandler 
& Clark,  2014). By explicitly assessing broad-scale spatiotemporal 
changes in population distributions, spatially explicit IPMs can bet-
ter identify whether changes in observation frequency of a spe-
cies are due to movement patterns (i.e., availability) or changes in 
abundance (Lowerre-Barbieri, Kays, Thorson, & Wikelski,  2019; 
Saunders et al., 2019). Incorporating movement dynamics into pop-
ulation models has become increasingly important as climate change 
continues to alter environmental conditions, often leading to pole-
ward or, for some marine species, distributional shifts into deeper 
basins (Murphy,  2020; Pecl et  al.,  2017). Similarly, accounting for 
ontogenetic movement is necessary to understand habitat utiliza-
tion patterns (e.g. Carruthers, Walter, McAllister, & Bryan,  2015), 
accurately interpret climate effects (Barbeaux & Hollowed,  2018) 
and implement informed conservation measures (e.g. the usefulness 
of marine reserves; White, 2015). Therefore, development of spa-
tial models that can directly account for connectivity will improve 
understanding of the influence of ontogeny and climate change on 

spatiotemporal dynamics and help implement more sustainable spa-
tial harvest strategies (Karp et al., 2019; Link, Nye, & Hare, 2011).

In the marine realm, spatiotemporal dynamics are complicated 
by increased diffusivity and transient features, stronger scale de-
pendence of marine processes and the larger spatial extent of 
many marine habitats compared to landscapes (Hidalgo, Secor, & 
Browman, 2016). Thus, the sustainable management of marine re-
sources often depends on understanding spatial population struc-
ture and connectivity (Berger et al., 2017; Ciannelli et al., 2013). Yet, 
integration of the movement ecology paradigm for many aquatic 
species has lagged terrestrial counterparts, perhaps due to diffi-
culties collecting fine-scale tracking data in the marine realm (e.g. 
due to increased tag detection issues for telemetry data) and lim-
itations in obtaining similar per capita electronic tag sample sizes 
for fish populations compared to terrestrial populations (Crossin 
et  al.,  2017; Lowerre-Barbieri et  al.,  2019). However, the last de-
cade has seen a rapid increase in spatially explicit IPMs for marine 
resources (Punt, 2019a,2019b).

Spatially explicit IPMs can be classified into two main catego-
ries (Berger et al., 2017; Cao, Thorson, Punt, & Szuwalski, 2020): 
spatiotemporal and spatially stratified. Spatiotemporal applica-
tions utilize spatial correlation functions to allow a continuous 
approximation of spatial dynamics with movement being implic-
itly or explicitly modelled and estimated (e.g. Cao et  al.,  2020; 
Thorson, Jannot, & Somers, 2017). Conversely, spatially stratified 
approaches discretize the model domain into independent popu-
lation units or geographic areas (Goethel, Quinn, & Cadrin, 2011) 
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and utilize box-transfer movement dynamics (i.e., connectivity is 
approximated by instantaneous movement of animals from one 
spatial unit to another; Beverton & Holt,  1957) with movement 
parameters either estimated or fixed. Spatiotemporal approaches 
are gaining momentum as fishery stock assessment tools (i.e., sta-
tistical models for estimating population abundance trends based 
on observed fishery data), because of the ability to elucidate fine-
scale dynamics by fitting data at the scale it was collected (e.g. 
precise spatiotemporal survey locations recorded by GPS; Cao 
et al., 2020). However, only a handful of spatiotemporal IPM ap-
proaches exist (e.g. Cao et al., 2020). Thus, the spatially stratified 
box-transfer framework remains the most commonly implemented 
in stock assessment software with spatial capabilities due to the 
flexibility to fit the relatively coarse spatial scale of historical fish-
eries data (e.g. Goethel et al., 2011).

Although spatially stratified population models for marine spe-
cies have been sporadically applied for the past thirty years (e.g. 
Quinn, Deriso, & Neal, 1990), only a handful of studies have explored 
the ability to directly estimate complex age- and/or time-varying 
connectivity patterns. For instance, McGilliard, Punt, Methot, and 
Hilborn (2015) simulated ontogenetic movement and revealed that 
models estimating age-based movement parameters performed best 
even without a priori knowledge of connectivity patterns. Similarly, 
Carruthers et  al.  (2015) demonstrated that complex ontogenetic 
movement could be reliably estimated for two reef fish in the Gulf 
of Mexico using a simplified movement functional form and that the 
spatial IPM was more robust to mis-specified spatial structure than 
a spatially aggregated IPM. On the other hand, Lee, Piner, Maunder, 
Taylor, and Methot (2017) determined that naïve spatial models per-
formed no better than spatially implicit (i.e., where spatially vary-
ing selectivity is treated as a substitute for spatial areas, known as 
“areas-as-fleets” models) counterparts when age- and time-varying 
movement occurred. However, spatially implicit areas-as-fleets mod-
els have generally been shown to perform poorly when spatial struc-
ture exists (e.g. Hurtado-Ferro, Punt, & Hill,  2014; Punt, Haddon, 
Little, & Tuck, 2016, 2017) and are not widely recommended in place 
of spatially explicit IPMs (Punt, 2019a,2019b). For a simulation study 
with climate-induced poleward distributional shifts and ontogenetic 
movement, Hulson, Quinn, Hanselman, and Ianelli (2013) found that 
models estimating age- and time-varying movement utilizing a scaled 
random walk performed well. Despite disparate approaches and as-
sumed connectivity dynamics, a unifying conclusion across spatial 
modelling simulations is that inflexible movement parametrizations 
(e.g. assuming constant movement or incorrect functional forms) 
can be more detrimental for spatial models than ignoring movement 
altogether (Goethel, Legault, & Cadrin, 2015b; Hulson et al., 2013; 
Ying, Chen, Lin, & Gao, 2011).

In general, a better understanding is required regarding the 
consequences of ignoring connectivity patterns in IPMs, the per-
formance of spatially stratified IPMs when confronted with com-
plex movement and how to flexibly parametrize movement in 
spatial IPMs. In this study, we implement a generalized spatial 

simulation–estimation framework to explore the robustness of spa-
tially stratified IPM movement parametrizations across a range of 
simulated connectivity dynamics. Our results give insight on the im-
portance of accounting for spatial dynamics in IPMs, while providing 
guidance on flexible movement parametrizations that can be utilized 
when little information exists on population-scale connectivity.

2  | MATERIAL S AND METHODS

2.1 | Overview

A spatial simulation–estimation framework was utilized to model the 
dynamics of a metapopulation consisting of two populations with 
varying demographics and productivity regimes connected through 
post-settlement movement. The operating model (OM), represent-
ing the true dynamics of the system, was parametrized to simulate 
the dynamics of a relatively short-lived (maximum age of eight years), 
fast-growing species. Simulations were not meant to mimic the dy-
namics of any specific species, but were set up to resemble general 
biological dynamics that may apply to several species groups (e.g. 
tuna, ground fish, reef fish or coastal pelagic species). The OM simu-
lated a range of connectivity dynamics and was used to generate 
pseudo-data. Various movement parametrizations within a spatially 
stratified IPM were then applied to explore bias in important con-
servation quantities used for providing management advice (e.g. 
spawning biomass, fishing mortality and recruitment). This work 
represents an extension of the simulation–estimation framework of 
Goethel et al. (2019) with a wider diversity of simulated movement 
scenarios and movement parametrizations in the IPM. The modelling 
framework is summarized below with a focus on novel movement 
dynamics. Primary OM parameter values and resulting population 
trajectories can be found in the Tables S1–S3 and Figures S1–S3. For 
a full detailed description of the general modelling framework, see 
Goethel et  al.  (2019) and the accompanying supplementary mate-
rial to that publication. The model was coded in AD Model Builder 
(Fournier et al., 2012) and can be downloaded from the GitHub re-
pository (https://github.com/dgoet​hel/Spati​al-Asses​sment-Simul​
ator).

2.2 | Operating model

The sequential order of events in the OM, which assumed a 
yearly time step (y), involved: (a) spawning; (b) birth and settle-
ment (recruitment to the populations); (c) release of tagged fish, 
if tagging takes place in that year; (d) instantaneous movement of 
tagged and untagged fish between populations; and (e) continu-
ous natural mortality and removals due to harvest throughout the 
year, including tag recaptures. The main parameters that defined 
the population trajectories (i.e., fishing mortality, recruitment 
and movement) all included stochasticity to better incorporate 

https://github.com/dgoethel/Spatial-Assessment-Simulator
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variability in critical population processes typical of real-world ap-
plications. Abundance (N) at age (a) by population (p or j) was pro-
jected forward for 30 years starting from input initial abundance 
at age. Abundance at age was calculated at the beginning of the 
year (y) before movement occurred (NBEF) based on the abundance 
after movement (NAFT) in the previous year and age discounted for 
mortality processes:

Natural mortality (M; instantaneous rate) was population-spe-
cific, but age-invariant and occurred continuously for the entire 
year. Fishery selectivity (vf; susceptibility to the fishing gear) as-
sumed a logistic function with age (Figure S1) and was time-invari-
ant. The yearly fishing mortality multiplier (F; yearly harvest level 
as an instantaneous rate) assumed a dome shape over time, which 
was meant to represent a typical fishery development scenario, 
and one fishery per population was modelled. The total fishing 
mortality (F) on a given age was the combination of selectivity at 
age, the yearly harvest rate, and a lognormally distributed annual 
random deviate (εF) controlled by the fishing mortality variance 
term (σF = 0.3):

Connectivity utilized the box-transfer method, which assumed 
movement was a Markov process. The movement parameter, Tj→p

y,a

, represented the fraction of age a fish from population j in year 
y that moved to population p. The simulated movement dynamics 
for each OM scenario are qualitatively described in the following 
section (“Movement Dynamics”), whereas the full mathematical 
descriptions can be found in the Section S1 “Operating Model 
Movement Parametrization”. Abundance after movement was 
given by:

Spawning biomass (S) at the beginning of the year was the 
product of abundance, maturity (m) and weight (w) for mature ages 
(Figure S1), a ≥ 2:

New births were then assumed to be a density-dependent 
function of spawning biomass based on a Beverton–Holt stock–
recruit relationship with lognormally distributed annual ran-
dom deviations (εR) controlled by the recruitment variance term 
(σR ~ 0.5):

where R0 was the unfished virgin recruitment and h (value of 0.7) 
was the steepness of the stock–recruit relationship (i.e., a measure of 
productivity of the population; Conn, Williams, & Shertzer, 2010). Φ0 
represented the unfished spawning biomass-per-recruit calculated 
by:

The fishery was assumed to operate continuously for the entire 
yearly time step and catch (C) by population, year and age was cal-
culated using Baranov's catch equation (Hilborn & Walters, 1992):

A fishery-independent survey (s) was assumed to occur mid-year 
(ts = 0.5) where survey catch was calculated assuming a time-invari-
ant logistic survey selectivity function (vs) and a constant catchability 
scalar (qs):

The associated expected value of the index of biomass (I) was 
calculated from:

A multiyear Brownie tag-recovery model (Brownie, Hines, 
Nichols, Pollock, & Hestbeck,  1993) was also simulated. In each 
year of the simulation, a new tag cohort could be released into 
the population, where a cohort (l) was defined by the combination 
of year, age and population of release. During each release event, 
5,000 tags were released, which represented a common average 
value for conventional tagging programs. For the majority of simula-
tions, tag release frequency was every five years (see next Section 
2.5 Sensitivity Runs for alternate designs). Based on the results of 
Goethel et al.  (2019), this design provided a cost-effective and re-
alistic tagging protocol (as opposed to yearly tagging). A tagged in-
dividual was assigned to a release cohort by apportioning the total 
releases to a population based on the relative survey biomass and 
distributing across ages within a population relative to survey age 
compositions. The tag deployment dynamics were parametrized 
such that the number of tag releases was much less than 1% of initial 
population abundance (i.e., only a small fraction of the population 
was tagged as in any real-world application). Tag abundance (n) by co-
hort was calculated identically to the main population (i.e., following 
Equations 1-3), but with recruitment replaced by tag release events. 
Cohort-specific recaptures (r) were calculated using Baranov's catch 
equation adjusted to account for population-specific, time-invariant 
tag reporting rate (β):

(1)Np,y,a,BEF=Np,y−1,a−1,AFTe
[−(Fp,y−1,a−1+Mp)].

(2)Fp,y,a=vf,p,aFp,ye

(
�Fp,y

−0.5�2
F

)

;�Fp,y ∼N
(
0, �2

F

)
.

(3)Np,y,a,AFT= j
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]
.
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Np,y,a,BEFwp,amp,a.
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(8)Cs,p,y,a=qs,pvs,p,aNp,y,a,AFTe
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A list of OM inputs and values can be found in the Table S1.

2.2.1 | Movement dynamics

Four movement dynamics were simulated (Figure 1; see the Section 
S1 “Operating Model Movement Parametrization” for a full descrip-
tion of the equations and parameter values governing movement in 
the model). The density-dependent (DD) formulation assumed that 
fish emigrated with increasing probability as abundance approached 
the age-specific carrying capacity term in a given population (Goethel 
et al., 2015b, 2019). Connectivity varied most strongly across years 
(without any long-term directional trend), but age-based patterns 
were also present (Figure S2; Table S2). In the ontogenetic (ONT) 
OM, age-based movement patterns were implemented to resemble 
movement from juvenile (population two) to adult (population one) 
habitat as fish became older. Younger fish (i.e., ages one through 
four) had a high probability of moving to and remaining in population 
two, whereas older fish (ages five and older) had a high probability 
of moving to and remaining in population one. The climate-induced 
movement (CLM) OM emulated a poleward (or deeper) distributional 
shift where fish developed increasing affinity for the environmental 

conditions of population one. Similar patterns of age-based move-
ment as the DD OM were used, but a time trend was incorporated 
that increased the probability of fish moving to, and remaining in, 
population one over the time series (e.g. Link et al., 2011). Although 
no other biological characteristics were linked to the time trend (i.e., 
improved biological conditions in population one were not directly 
simulated), population one was characterized by generally more fa-
vourable biological parameters (i.e., a higher R0 and slightly lower 
natural mortality; Table S1) in all scenarios. Finally, the climate-in-
duced time trends were combined with the ontogenetic age-based 
movement patterns (C+O OM). The C+O OM demonstrated how 
climate impacts on ontogenetic migration patterns might influence 
relative population distributions and trajectories (e.g. Barbeaux & 
Hollowed, 2018).

For all movement scenarios, random variation was included by 
multiplying the emigration rate by a lognormally distributed ran-
dom deviation controlled by the movement variance term (σT = 0.3; 
with the same realized set of random numbers generated for each 
OM movement scenario) and bounds implemented to ensure move-
ment rates remained between zero and one (see the Supplementary 
Material for a full description of the simulated movement dynamics). 
The random number used to define a given deviation was population, 

F I G U R E  1   Schematic representation of the four simulated movement scenarios implemented in the operating model (OM). Although age- 
and time-varying movement are implemented in all movement scenarios (see Figure S2), for simplicity of the figure ages are grouped into 
juvenile (ages one through four) and adult (ages five through eight) phases whereas time variation is grouped by early (first fifteen years) and 
late (recent fifteen years) periods. The level of movement (arrows) among populations (dotted rectangles) is indicated by arrow thickness. For 
the density-dependent (DD) scenario (a), emigration increases as a population becomes more densely populated, and the rate of emigration 
varies over time as new recruits enter each population and older fish redistribute across the populations. With ontogenetic (ONT) movement 
(b), younger fish are more attracted to population two (e.g. it represents juvenile habitat), while older fish are more attracted to population 
one (e.g. it represents spawning habitat), and these affinities do not vary strongly over time. In the climate-induced movement (CLM) 
scenario (c), fish have an increasing affinity over time for population one (e.g. emulating climate impacts that improve the environmental 
conditions in population one); both emigration from population two and residency in population one increase over the time series. Finally, 
the climate and ontogenetic (C+O) scenario (d) overlays the age-based movement patterns of b with the climate-induced time trend in c.
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year and age specific, which allowed for moderate random variation 
across all axis of movement even when the primary drivers were sin-
gle factors (e.g. age or time). The age and time-varying movement 
rates are shown in Figure S2 with corresponding movement parame-
ters provided in Table S2, while the resulting population trajectories 
for each of the movement OMs are illustrated in Figure S3.

2.2.2 | Simulated data

The model produced five sets of population-specific pseudo-data: 
(a) age compositions from the catch; (b) survey age compositions; (c) 
total yield (i.e., the summation across ages of the product of catch 
and weight); (d) survey biomass; and (e) tag recaptures. Pseudo-data 
were generated for each year of the model with measurement error 
simulated for each data source using stochastic processes based on 
an assumed underlying probability distribution (Table S3). For the 
tagging data, a multinomial probability distribution was utilized, but 

the effective sample size was set at 200 which was much lower than 
the actual number of tags released per cohort (i.e., 5,000 tags). The 
lower effective sample size allowed for increased uncertainty (i.e., 
implicit overdispersion) in the tagging data; otherwise, the tagging 
data would have been overly informative and not representative 
of real-world observations. For each movement OM scenario, 500 
pseudo-datasets were simulated. The error levels along with the 
number of runs were chosen to adequately encapsulate stochas-
ticity and represent typical levels of variation observed in aquatic 
populations and associated data collection.

2.3 | Integrated Population Models

Spatially stratified IPMs were fit to the thirty-year time series of 
pseudo-data for each of the movement OMs. With the exception 
of movement parametrization, the IPM structure matched that of 
the OM including fixing steepness, natural mortality and reporting 

TA B L E  1   Names and convergence rates for the twenty-four combinations of the four OM movement scenarios and the six IPM 
movement parametrizations

OM movement IPM movement parametrization Identifier
Convergence 
rate

Density-dependent (DD) No movement (NO_T) DD_NO_T 0.976

Constant (CNST) DD_CNST 1.000

Age-varying (AGE) DD_AGE 1.000

Time-varying (YR) DD_YR 1.000

Movement estimated in two-year time blocks and for 
every two ages (2YR+2AG)

DD_2YR+2AG 1.000

Time- and age-varying (YR+AG) DD_YR+AG 1.000

Ontogenetic (ONT) No movement (NO_T) ONT_NO_T 1.000

Constant (CNST) ONT_CNST 1.000

Age-varying (AGE) ONT_AGE 0.984

Time-varying (YR) ONT_YR 0.936

Movement estimated in two-year time blocks and for 
every two ages (2YR+2AG)

ONT_2YR+2AG 1.000

Time- and age-varying (YR+AG) ONT_YR+AG 1.000

Climate-induced (CLM) No movement (NO_T) CLM_NO_T 1.000

Constant (CNST) CLM_CNST 0.992

Age-varying (AGE) CLM_AGE 0.988

Time-varying (YR) CLM_YR 0.992

Movement estimated in two-year time blocks and for 
every two ages (2YR+2AG)

CLM_2YR+2AG 0.998

Time- and age-varying (YR+AG) CLM_YR+AG 0.988

Climate-induced and ontogenetic 
(C+O)

No movement (NO_T) C+O_NO_T 1.000

Constant (CNST) C+O_CNST 0.992

Age-varying (AGE) C+O_AGE 0.998

Time-varying (YR) C+O_YR 1.000

Movement estimated in two-year time blocks and for 
every two ages (2YR+2AG)

C+O_2YR+2AG 1.000

Time- and age-varying (YR+AG) C+O_YR+AG 1.000
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rate (although a sensitivity run was performed with reporting rate 
estimated, see below) at the true values. A maximum-likelihood 
estimation (MLE) framework was utilized to estimate population-
specific parameters (e.g. yearly fishing mortality, R0, yearly recruit-
ment deviations, time-invariant logistic selectivity parameters, initial 
abundance at age and movement rates) where all parameters were 
treated as fixed effects. MLE variance terms (σ; i.e., the assumed 
standard deviations associated with the lognormally distributed data 
sources, as well as the equivalent value used to penalize deviations 
from the stock–recruit function) and effective sample size (ESS; for 
multinomial distributions) for each likelihood component were taken 
directly from the operating model (Table S3). Penalty functions were 
utilized to stabilize estimates and prevent unfeasible parameter val-
ues (e.g. zero values of virgin recruitment, extremely high levels of 
movement or fishing mortality and large recruitment deviations).

Variants of the IPM included the following parametrizations of 
movement (Table 1): (a) fish were not allowed to move among popu-
lations (NO_T); (b) population-specific age- and time-invariant move-
ment rates were estimated (CNST); (c) movement was estimated for 
each age and population (AGE); (d) time-varying movement rates 
were estimated for each population (YR); (e) movement rates were 
estimated in two-year time blocks and for every other age for each 
population (2YR+2AG); and (f) movement was freely estimated for 
every year and age for each population (YR+AG). Additionally, two 
variations of each of these IPMs were developed: the first esti-
mated population-specific reporting rate (Est_B); the second fixed 
movement at the true values from the OM (FIX_T; see section 2.5 
Sensitivity Runs and Table S4 for more information on each).

2.4 | Evaluation of Model Performance

The performance of each IPM was compared based on bias and pre-
cision in estimates of population parameters. Time series plots of 
percent relative error (RE) in population-specific and total spawning 
biomass, fishing mortality (population-specific values only) and re-
cruitment were developed to explore estimation performance over 
time. Additionally, the median absolute relative error (MARE; a com-
bined measure of bias and variability) across all 500 pseudo-datasets 
for population-specific spawning biomass in the terminal year was 
calculated by:

The MARE was used to determine the “min-max” solution, which 
identified the best-performing IPM movement parametrization 
across the range of simulated movement OMs. The min-max solution 
involved identifying which IPM configuration had the smallest max-
imum value of MARE across all OMs (McGilliard et al., 2015). The 
min-max solution provided guidance on which movement estimation 
approach was most robust to uncertainty in movement dynamics. 
Model stability, an indicator of overparametrization and robustness, 
was determined based on the convergence rate.
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2.5 | Sensitivity Runs

A number of sensitivity runs were developed to explore the robust-
ness of the IPMs and conclusions of the analyses. An additional OM 
scenario (No_Move) was simulated with closed populations (i.e., no 
movement) to determine whether IPMs were able to adequately ac-
count for negligible emigration. To examine the impact of data avail-
ability, OMs were developed that simulated either no tagging data 
(NO_TAG) or yearly tagging (TAG_YR). The former OM represented a 
common data limitation for marine resources where auxiliary infor-
mation may not be available, while the latter illustrated an ideal data 
situation. Two alternate life-history OMs were developed, which in-
cluded a short-lived (SL) and long-lived (LL) variant. The long-lived 
OM doubled the number of ages (to sixteen), the age at 50% matu-
rity, and the age at 50% selectivity, while halving the natural mortal-
ity. On the other hand, the short-lived OM halved the number of 
ages (to four), the age at 50% maturity and the age at 50% selectiv-
ity, whereas natural mortality was doubled. Although the life-history 
OMs were rudimentary approximations of either fast-growing small 
pelagic species or relatively slow growing ground fish or deep-water 
species, they provided insight into how the IPMs performed with 
variable life-history dynamics, particularly for estimation of age-
based movement rates.

Although incorporation of tag data within an IPM can be bene-
ficial for aiding the estimation of movement and mortality param-
eters, its inclusion also necessitates further model assumptions or 
estimated parameters (e.g. tag shedding, mortality and reporting 
rate; Goethel et al., 2019; Vincent, Brenden, & Bence, 2017, 2020). 
Because the IPMs assumed, unrealistically, that tag reporting rate 
was known precisely (i.e., fixed at the true value), sensitivity runs 
were performed with population-specific reporting rates directly 
estimated to determine if the added estimated parameters led to in-
creased bias or imprecision (Est_B). Finally, each of the IPMs was run 
with movement fixed at the true value from the OM (FIX_T), which 
represented a pseudo self-consistency run demonstrating whether 
movement or other parameters were the primary source of uncer-
tainty in the model. Results from sensitivity runs were provided in 
the Supplementary Material and discussed briefly in the following 
section (see Table S4 for a complete list of sensitivity runs presented 
and Figures S10–S16 for the results from these runs).

3  | RESULTS

3.1 | Best-Performing IPM Parametrizations

All models demonstrated high convergence rates (i.e., greater than 
90%; Table 1) indicating that none of the models had any major pa-
rameter confounding or model stability issues. Depending on the 
simulated movement, a different IPM demonstrated the best per-
formance based on MARE in terminal spawning biomass (Table 2). 
The best-performing IPM tended to be the one that could parsi-
moniously estimate the primary driver of the movement dynamics 

(e.g. estimating age-varying trends for ontogenetic movement or 
time-varying trends for climate-induced movement). For each of the 
movement OMs, the best-performing IPMs demonstrated generally 
unbiased and relatively precise estimation of population-specific 
spawning biomass and fishing mortality over the entire time series 
(Figures 2-3). But, recruitment estimates, although generally median 
unbiased, were highly imprecise (Figure S4). The impacts of time 
trends in movement (i.e., the CLM and C+O OMs) were the most prob-
lematic to interpret for the IPMs, which resulted in slight trends in 
bias over time (Figures 2-3). Inclusion of tagging data was extremely 
helpful for reducing these bias trends, but the interplay between the 
tag release frequency (i.e., release events every five years) and the 
accuracy of subsequent mortality and movement parameter esti-
mates resulted in a cyclical bias in these parameters and associated 
spawning stock biomass and fishing mortality (Figures  2-3, Figure 
S5; see 3.3 Sensitivity Runs for an explanation of this phenomenon).

The 2YR+2AG parametrization proved to be the most robust to 
the various movement OMs (i.e., it was the min-max solution), pro-
viding the lowest maximum MARE (maximum value of 29.24 for ter-
minal spawning biomass in population two for the CLM OM; Table 2). 
The 2YR+2AG parametrization was also chosen as the min-max solu-
tion when exploring MARE across the entire time series (Table S5). 
Although the 2YR+2AG parametrization demonstrated limited bias 
for most of the movement OMs, it exhibited increasing bias for the 
last ten years of the time series under the CLM scenario (Figure S6). 
Increasing bias for the CLM scenario was a common theme across 
IPM parametrizations, including the best-performing YR IPM (Figure 
S7). The unidirectional nature of movement under the CLM OM 
likely resulted in difficulty disentangling population-specific signals 
in the data, especially regarding recruitment, leading to the increas-
ing bias seen in many of the IPMs. Conversely, when time and age 
trends in movement were simulated simultaneously (C+O OM), the 
2YR+2AG parametrization demonstrated limited bias with no time 
trends, despite the comparatively more complex simulated dynamics 
compared to the CLM OM (Figure S7–S8).

3.2 | Detriments of Ignoring or 
Oversimplifying Movement

Ignoring movement dynamics (i.e., applying the NO_T IPM) was highly 
detrimental to obtaining unbiased estimates of population-specific 
spawning biomass and fishing mortality, with median absolute bias 
ranging from 10% – 100% across OMs (Figures 4-5). Similar trends 
in bias but with higher imprecision were observed in estimates of 
recruitment (Figure 6 and Figure S9). Strong age-based movement 
patterns were the most problematic when movement was ignored 
in the IPM (Figures 4-5). On the other hand, the NO_T IPM demon-
strated limited bias in estimates of spawning biomass for the CLM 
OM, but bias increased rapidly in the terminal five years resulting 
in similar bias levels as the 2YR+2AG IPM (Figure 6). Under the CLM 
scenario, the NO_T IPM also demonstrated a strong time trend in 
recruitment bias. The model increasingly overestimated recruitment 
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in population one and underestimated recruitment in population 
two, because the model was attempting to account for the increas-
ing emigration rate of fish out of population two over the time series 
(Figure 6).

Implementing oversimplified movement parametrizations was 
often as detrimental to IPM performance as assuming no movement. 
For instance, the NO_T IPM outperformed the CNST IPM for all sim-
ulated movement scenarios except for the DD OM, with the CNST 
IPM exhibiting a worse min-max performance for both terminal year 
and aggregate MARE (e.g. largest MARE value for terminal SSB of 
118.3 compared to 33.34 for the NO_T IPM; Table 2 and Table S5). 
Perhaps surprisingly, the AGE, YR and YR+AG IPMs also demonstrate 
higher maximum MARE values for terminal SSB than the NO_T IPM 

(Table  2). However, only the YR IPM maintained higher maximum 
MARE values than the NO_T IPM for SSB when the estimates across 
the entire time series were considered (Table S5). Furthermore, the 
YR+AG IPM performed similarly to the 2YR+2AG IPM (with the ex-
ception of extremely poor performance when the YR+AG IPM was 
applied to the CLM OM), especially when complex movement was 
present (e.g. the C+O OM; Table  2 and Table S5; Figures S7–S8). 
Contrariwise, despite being the best models when correctly spec-
ified, the AGE and YR IPMs often performed worse than the NO_T 
IPM when the primary driver of movement was ignored (e.g. ap-
plying the YR IPM to the ONT OM; Table  2 and Table S5; Figures 
S7–S8). Thus, our results suggest that it was generally better to im-
plement movement parametrizations that were likely to be slightly 

F I G U R E  2   Time series of bias (relative percent difference) in population-specific and system-wide spawning biomass for the best-
performing (as determined by the lowest MARE; Table 2) IPM for each movement OM. Corresponding simulation intervals are provided by 
the various fill colours (i.e., 100% in light grey, 95% in medium grey, and 75% in dark grey). White dots illustrate median bias. The dashed line 
indicates zero bias. The combination of OM and IPM names are given as column headers and described in Table  1
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more complex than the true dynamics compared to oversimplifying 
or ignoring movement. However, careful consideration of the po-
tential tradeoffs between overparametrization and precision should 
be considered (i.e., the 2YR+2AG model was more parsimonious and 
outperformed the YR+AG IPM).

3.3 | Sensitivity Runs

All of the IPMs were robust to negligible movement rates (i.e., the 
closed population assumption) of the No_Move OM scenario (Figure 
S10). However, the impact of overparametrization was seen in the 
more complex movement estimation models (Figure S10). Estimation 

bias increased in the terminal five years for the AGE, YR, 2YR+2AG 
and YR+AG IPMs, which was likely due to the limited information 
on recruitment from the age composition data in these years lead-
ing to increased movement and recruitment parameter correlation. 
However, bias was typically less than 5% and was insignificant com-
pared to ignoring or misdiagnosing movement when it was actually 
occurring (Figures 4-5).

The strong influence of tagging data was discernible in the cy-
clical bias patterns observed in spawning biomass and fishing mor-
tality for the best-performing IPMs under the CLM and C+O OMs 
(Figures 2-3). During and immediately following tag release events, 
estimation of movement parameters improved causing a sharp 
decrease in bias (Figure S5) resulting in the observed patterns in 

F I G U R E  3   Time series of bias (relative percent difference) in population-specific fishing mortality (on fully selected ages) for the best-
performing (as determined by the lowest MARE; Table 2) IPM for each movement OM. Corresponding simulation intervals are provided by 
the various fill colours (i.e., 100% in light grey, 95% in medium grey, and 75% in dark grey). White dots illustrate median bias. The dashed line 
indicates zero bias. The combination of OM and IPM names are given as column headers and described in Table  1
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population trajectory bias. When yearly tagging data were available 
(TAG_YR scenarios), bias levels decreased and the pattern disap-
peared (Figure S11). Yearly tagging data was particularly helpful in 
reducing the bias observed under the CLM scenario (Figures S7 and 
S11). Without tagging data (NO_TAG scenarios), IPMs demonstrated 
increased bias and a twofold decrease in precision (Figures S12–S13). 
When time trends in emigration existed (e.g. the CLM and C+O sce-
narios) and no tagging data were available, IPMs had difficulty in-
terpreting the signals in the data (Figure S12). For instance, with the 
CLM OM, the YR IPM demonstrated increasing bias levels across the 
time series when no tagging data were available to aid estimation of 
emigration rates. However, inclusion of tagging data appeared to be 
less important for the estimation of age-based movement (i.e., when 

it was the only main source of movement variation as in the ONT 
OM; Figure S13).

Results were consistent across different life-history types, but 
imprecision in spawning biomass increased when there were more 
ages (i.e., the LL OM) for which to estimate movement parameters 
(Figure S13). On the other hand, convergence rates diminished for 
the SL OM (Table S4), likely due to the decrease in data (i.e., ages 
in age composition and tagging states) from which to estimate 
parameters.

The IPMs were generally able to estimate the population-specific 
reporting rate (Est_B IPMs) with limited bias and resulting in only 
minor increases in uncertainty and bias in spawning stock biomass 
trajectories (Figure S14–S15). When movement in the IPM was fixed 

F I G U R E  4   Time series of bias (relative percent difference) in population-specific and system-wide spawning biomass when movement is 
ignored (NO_T) in the IPM for each movement OM. Corresponding simulation intervals are provided by the various fill colours (i.e., 100% in 
light grey, 95% in medium grey, and 75% in dark grey). White dots illustrate median bias. The dashed line indicates zero bias. The combination 
of OM and IPM names are given as column headers and described in Table  1
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at the true value from the OM (FIX_T IPMs), bias in spawning stock 
biomass essentially disappeared and precision increased dramati-
cally, which demonstrated that difficulty estimating movement rates 
was the primary source of uncertainty in the model (Figure S16).

4  | DISCUSSION

Understanding spatial variability and movement in animal popula-
tions is imperative for determining a species’ response to dynamic 
processes, such as climate-induced changes and harvest mortality 
(Allen & Singh, 2016; Zipkin & Saunders, 2018). The interaction of 
animal movement, the spatiotemporal distribution of harvesters 

and implementation of spatial conservation measures often lead 
to disproportionate and unintuitive impacts on spawning compo-
nents within a population network, which cannot be predicted by 
spatially aggregated models (Fu & Fanning,  2004). For instance, 
in our model, redistribution among populations due to different 
movement patterns when comparing the CLM and ONT OMs led 
to an almost twofold increase in total system spawning biomass 
mostly due to the minor differences in fishing mortality and se-
lectivity by population (Figure S3). Similarly, as illustrated by Link 
et  al.  (2011) and demonstrated with the CLM OM, when unidi-
rectional distribution shifts occur, a spatially aggregated popula-
tion model would likely predict rebuilding throughout the species 
range, while being naïve to the potential decline of the population 

F I G U R E  5   Time series of bias (relative percent difference) in population-specific fishing mortality (on fully selected ages) when 
movement is ignored (NO_T) in the IPM for each movement OM. Corresponding simulation intervals are provided by the various fill colours 
(i.e., 100% in light grey, 95% in medium grey, and 75% in dark grey). White dots illustrate median bias. The dashed line indicates zero bias. 
The combination of OM and IPM names are given as column headers and described in Table 1
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undergoing increasing emigration rates (Figure S3). A negative 
feedback loop between management advice and population size 
would likely ensue where quotas would be set too high and de-
creased species resiliency could occur as the population with 
increased emigration continued to decline (Fu & Fanning,  2004; 
Punt,  2019a,2019b). Climate-induced distributional shifts could 
also lead to large segments of the resource moving into areas that 
are outside the existing spatial domain of fishery surveys, which 
could further exacerbate bias in IPMs and impede the ability to 
implement sustainable harvest strategies. Improving the ability 
of spatially stratified IPMs to accurately detect shifts in a species 
distribution will help communities that rely on the harvest of the 

resource to adequately plan and become resilient to such changes 
(Badjeck, Allison, Halls, & Dulvy,  2010; Hughes et  al.,  2012). 
Similarly, implementation of reserves or protected areas relies on 
being able to accurately monitor spatiotemporal dynamics of ani-
mals and harvesters (White, 2015). Thus, spatially stratified IPMs 
are warranted to help develop sustainable and well-informed 
spatial conservation strategies (Berger et  al.,  2017; Chandler & 
Clark,  2014; Punt,  2019a,2019b). Furthermore, increased collec-
tion and utilization of tagging data, including conventional, elec-
tronic and natural tags, can help differentiate whether observed 
population fluctuations are due to changes in availability or abun-
dance (Saunders et al., 2019), especially as fish distributions begin 

F I G U R E  6   Time series of bias (relative percent difference) in population-specific and system-wide spawning biomass and recruitment for 
the no movement (NO_T) and the 2YR+2AG (i.e., the min-max solution as determined by the lowest maximum MARE across movement OMs; 
Table 2) IPMs for the climate-induced movement (CLM) OM. Corresponding 75% simulation intervals are provided by the dark grey fill. White 
dots illustrate median bias. The dashed line indicates zero bias. The combination of OM and IPM names are given as column headers and 
described in Table  1
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to extend beyond the domain of existing data collection regimes 
(e.g. fishery surveys) due to climate-induced poleward (or deeper) 
movement.

We demonstrated the ability of spatially stratified IPMs to ac-
count for complex movement patterns and accurately estimate pop-
ulation-specific biomass levels. Results indicate that using flexible 
parametrizations of movement is warranted to avoid oversimplify-
ing connectivity dynamics, which may cause estimation bias on par 
with ignoring movement completely (Goethel et al., 2015b; Hulson 
et  al.,  2013; Lee et  al.,  2017). However, the flexibility in parame-
trizing both age- and time-varying connectivity must be balanced 
against the number of parameters to be estimated (i.e., weighing 
complexity versus parsimony). For instance, binning movement pa-
rameters in two-year and two-age blocks (i.e., the 2YR+2AG IPM) 
was the most robust across simulated movement OMs. Although 
the IPM that solely estimated movement parameters for the primary 
driver of connectivity dynamics in the OM often performed best (i.e., 
estimating age-based movement for the ontogenetic OM and yearly 
movement for the climate OM), the 2YR+2AG IPM was often able to 
adequately account for both age- and time-varying movement when 
completely naïve to the underlying true connectivity.

However, when confronted with the increasingly unidirectional 
movement rates associated with the climate change (CLM) scenario, 
the 2YR+2AG IPM performed relatively poorly. Conversely, the IPM 
that ignored movement (NO_T) performed adequately for the CLM 
scenario. Yet, both the NO_T and 2YR+2AG IPMs demonstrated in-
creasing bias over the terminal five to ten years of the CLM scenario 
resulting in similar bias levels over this time period (Figure 6). The 
NO_T IPM was only able to adjust for the inability to estimate move-
ment by overestimating the recruitment in population one and un-
derestimating it in population two. Similarly, estimation difficulties 
for the spatial IPMs associated with the CLM OM were most likely 
due to correlation among recruitment and movement parameters 
(i.e., increasing abundance in population one could be equally ex-
plained through increased recruitment in population one, as was the 
case in the NO_T IPM, or increased rates of immigration into popu-
lation one). Simultaneously, the unidirectional nature of movement 
likely led to a lack of contrast in the data (similar to a “one-way trip” 
in catch data; Hilborn & Walters, 1992) where the signals from the 
ever-growing population one inundated those from the increasingly 
smaller population two (i.e., there was limited information content in 
the data to differentiate the population trajectories and accurately 
estimate the trends in population two). Difficulty interpreting the 
productivity of smaller population units in spatial IPMs , is a common 
issue (e.g. Vincent et al., 2017), but it can sometimes be alleviated 
through unique tagging study designs (e.g. disproportionately tag-
ging the smaller population unit; Goethel et al., 2019).

Although the NO_T IPM performed comparatively well for the 
CLM OM, the misinterpretation of spatial productivity could have 
important implications for implementation of sustainable har-
vest strategies (Goethel & Berger,  2017). Additionally, unlike the 
2YR+2AG IPM, ignoring movement was highly problematic under all 
other movement scenarios. Therefore, given that the 2YR+2AG IPM 

was generally robust to all simulated movement scenarios (including 
no movement) and demonstrated only slightly worse performance 
under the CLM scenario, there was no apparent benefit to ignoring 
movement in the IPM for the scenarios simulated.

Under all movement scenarios, the performance of spatially 
stratified IPMs was greatly improved by the incorporation of tagging 
data, which supports conclusions from a wide array of previous simu-
lation studies with tag-integrated models (e.g. Goethel et al., 2015b, 
2019; Hulson, Miller, Ianelli, & Quinn,  2011; Hulson et  al.,  2013; 
Vincent et al., 2017, 2020). But, inclusion of tagging data must be 
carefully considered given the caveats associated with its use, such 
as the need to internally or externally estimate additional parameters 
(e.g. reporting rate, tag loss, tag mortality and tag mixing) and the re-
liability or scalability of the tagging data (i.e., is there overdispersion 
and do tagged animals adequately represent the dynamics of the 
greater population; Goethel et al., 2019). Additionally, the ability to 
obtain adequate tag sample sizes (i.e., number of releases in a given 
release event) may be an issue when funding is limited, for rare spe-
cies, or those otherwise difficult to tag. Furthermore, when tag loss 
or tag mortality rates are high, tag-integrated models are likely to be 
biased if external estimates of these values are inaccurate (Riecke 
et al., 2019; Vincent et al., 2020). Obtaining adequate recaptures can 
also be problematic when fishing mortality is low or non-reporting 
of recaptures is high. Similarly, accurate estimates of spatiotemporal 
variation in tag reporting rates is critical for achieving unbiased esti-
mates from tag-integrated models, because reporting rates are often 
highly correlated with fishing mortality and can be difficult to esti-
mate without auxiliary information (Brenden, Jones, & Ebener, 2010; 
Cadigan & Brattey, 2006; Goethel et al., 2015b; Vincent et al., 2017, 
2020). For example, Goethel et al. (2015b) demonstrated that fixing 
reporting rate at the wrong value led to error levels in a spatially 
explicit IPM on par with ignoring movement altogether.

Although the limitations must be carefully considered when using 
tagging data, simulation studies have increasingly demonstrated 
that issues with tagging data can be overcome through carefully 
chosen assumptions and well-designed tagging studies (Brenden 
et  al.,  2010; Goethel et  al.,  2015, 2019; Saunders et  al.,  2019; 
Vincent et al., 2017, 2020). Therefore, in many instances, the ben-
efits of including tagging data often outweigh the pitfalls for spatial 
IPMs (Goethel et al., 2019; Vincent et al., 2017, 2020). When only 
limited tag releases are possible, precision of spatial IPMs will likely 
decrease, but accuracy is not usually impacted (assuming that the 
dynamics of the tagged individuals, including movement, adequately 
reflect the overall population; Goethel et al., 2015b, 2019; Vincent 
et al., 2017). Additionally, many of the tag parameters (e.g. tag mix-
ing and tag reporting rates) are estimable within IPMs (Figures S14–
S15; Goethel et al., 2019; Vincent et al., 2017, 2020), particularly if 
auxiliary data are available and fit directly in the model (e.g. adding 
an objective function component for high reward tagging data as 
in Polacheck, Eveson, Laslett, Pollock, & Hearn,  2006). However, 
further work is needed to determine the optimal parametrization of 
reporting rates to adequately account for spatiotemporal variation 
in wide-ranging species harvested by diverse fleets, because direct 
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estimation can potentially add 10s to 100s of additional parameters 
(as is the case with Pacific tunas; Vincent, Pilling, & Hampton, 2019). 
Other parameters (e.g. tag loss and tag mortality) require direct in-
puts based on auxiliary experiments (e.g. double tagging or mortality 
studies) to avoid biased estimation in the IPM, but this information 
is routinely collected during tagging programs (Brenden et al., 2010; 
Cadigan & Brattey, 2006). With alternate tag types (e.g. electronic, 
genetic or natural), some of the issues associated with conventional 
tagging (e.g. tag reporting) may no longer apply, but new issues often 
arise (e.g. limited sample sizes due to cost limitations; Bravington, 
Skaug, & Anderson, 2016; Sippel et al., 2015). Ultimately, when spa-
tial tag-integrated IPMs are being considered, clear communication 
is required between stock assessment analysts and scientists de-
veloping tagging experiments. Open dialogue among scientists will 
help ensure that tagging experimental designs address estimation 
of any potential tagging “nuisance” parameters, even though these 
issues are often thoroughly addressed in most tagging programs 
(Brenden et al., 2010; Goethel et al., 2015b; Vincent et al., 2020). In 
many instances, though, spatially stratified IPMs can still be imple-
mented without incorporating tagging data (Punt, 2019a,2019b). For 
instance, the NO_TAG IPM demonstrated adequate performance for 
many of the movement scenarios (except the climate-induced move-
ment OM), corroborating the conclusions of Hulson et  al.,  (2011), 
Hulson et al.,  (2013), McGilliard et al.  (2015), Goethel et al.  (2019) 
and Punt (2019a) that spatial IPMs are often feasible without incor-
porating tagging data.

Ultimately, the utility and need for spatial population models is 
context dependent and varies based on the biology of the species, 
the data available, the dynamics of harvesters and the robustness of 
the management framework (Berger et  al.,  2017; Cadrin, Goethel, 
Morse, Gay, & Kerr,  2019). Correctly identifying spatial popula-
tion components (i.e., through population identification meth-
ods) and aligning biological, modelling and management units are 
often a prerequisite for developing robust conservation measures 
(Cadrin, 2020). In addition to representing best ecological practices, 
aligning the scale of modelled population units with observed bio-
logical structure may also be sufficient for developing robust har-
vest strategies for some species without the need for estimating 
movement (Bosley et  al.,  2019; Goethel et  al.,  2015a,2015b; Kerr 
et al., 2017). However, our analyses suggest that these situations are 
likely to be limited (e.g. to sessile species) and that strong age-based 
movement patterns will lead to highly biased estimates from IPMs 
that assume closed populations. Additionally, understanding and ac-
counting for movement dynamics can be beneficial for developing 
more flexible spatial harvest approaches (Bosley et al., 2019; Goethel 
& Berger, 2017) and can improve understanding of how recruitment 
dynamics vary across space (i.e., determining reproductive resilience 
of a species; Lowerre-Barbieri et al., 2017). The use of tailored oper-
ating models conditioned on the observed and assumed dynamics of 
a given case study is needed to explore whether spatially stratified 
IPMs are necessary to adequately assess a given species or popu-
lation (Cadrin, 2020; Goethel, Kerr, & Cadrin, 2016). Increased ap-
plication of spatially explicit management strategy evaluations can 

help identify the model complexity required to achieve sustainable 
management advice (e.g. Punt et al., 2017).

Generalized simulation approaches that incorporate generic, 
common biological and harvesting dynamics are useful tools for 
making theoretical advances in ecological understanding and de-
veloping best practices (Cadrin, 2020). Our generalized simulations 
were meant to emulate the common dynamics of a marine species 
with moderate longevity to provide basic guidance on parametrizing 
movement for spatially stratified IPMs. However, our results were 
based on a best-case scenario of spatial structure (i.e., assessment 
and biological units matched with no misspecification of population 
boundaries or biology) and model process error was only explored 
for the parametrization of movement. Although general conclu-
sions held across simulated life-history types (e.g. short-lived versus 
long-lived), performance may degrade with additional misspeci-
fication, process error (e.g. in natural mortality or productivity) or 
biological complexity (e.g. an increased number of populations). In 
any real-world application of an IPM (regardless of assumed spa-
tial structure and dynamics), fixed values of steepness or natural 
mortality are likely to lead to additional bias compared to our re-
sults, while estimation of these parameters is notoriously difficult 
(Conn et  al.,  2010; Lee, Maunder, Piner, & Methot,  2012; Vincent 
et al., 2017). Because spatial IPMs can interpret fluctuations in pop-
ulation abundance as either movement of fish, variation in produc-
tivity or shifts in mortality (Cadrin et al., 2019; Goethel et al., 2015b), 
bias in either steepness or natural mortality parameters may mag-
nify estimation issues in spatial IPMs. Incorporating tagging data can 
help improve estimates of natural mortality in certain applications, 
because the tag-recapture observations provide further informa-
tion on spatiotemporal variations in mortality (Goethel et al., 2019; 
Vincent et  al.,  2017). In most cases, natural mortality is likely to 
vary with age, but only limited research has explored the poten-
tial to estimate age-varying natural mortality in IPMs (e.g. Deroba 
& Schueller, 2013). The potential impacts on estimation when age 
variation in both movement and natural mortality occurs remain un-
characterized. Similarly, steepness estimation remains problematic, 
especially when productivity is relatively high (Conn et al., 2010; Lee 
et al., 2012), and estimation is likely to be further impeded within 
spatial models due to the difficulty in differentiating signals in pro-
ductivity among populations (Vincent et  al.,  2017). Developing 
steepness priors based on life-history models (e.g. Thorson, 2020) 
is a promising and active area of stock assessment research, but fur-
ther work is needed to understand the impact of misdiagnosing the 
spatial distribution of productivity.

Although our results underrepresent the bias that might be ex-
pected in a spatial IPM, we expect that the relative results (e.g. the 
min-max solution) would not be greatly impacted by incorporat-
ing further process error (e.g. incorrect steepness or natural mor-
tality assumptions), because these would likely impact both the 
spatial and closed population IPMs similarly. Additionally, further 
improvements to our IPM framework could potentially enhance 
the performance of spatially stratified IPMs. For instance, treat-
ing time-varying recruitment deviations and movement rates as 
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random effects would help reduce the number of effective pa-
rameters that need to be estimated (Maunder, Skaug, Fournier, 
& Hoyle,  2009; Thorson, Hicks, & Methot,  2015; Thorson & 
Minto, 2015). Treating recruitment and movement as random ef-
fects may also help reduce the inherent correlation between these 
parameters when treated as fixed effects and is likely to lead to 
improved performance of the full time and age-varying movement 
(YR+AG) IPM.

Spatially explicit IPMs often require increased assumptions 
and are viewed as more data intensive compared to spatially ag-
gregated assessment models (Punt,  2019a,2019b). Yet, they are 
better able to maximize the information content of data, while 
forcing explicit decisions regarding many assumptions that are im-
plicit within spatially aggregated approaches (Berger et al., 2017). 
But, unique challenges for implementing spatially stratified or 
spatiotemporal IPMs remain. Spatially stratified models have 
scale dependency tradeoffs where precision may decrease as the 
number of modelled spatial units increases (i.e., due to reduced 
sample sizes and an increasing number of estimated parameters; 
Cao et  al.,  2020; Cope & Punt,  2011; Punt,  2019b). The current 
study assumed limited biological complexity by modelling only 
two populations, but other simulations studies have proven that 
spatial IPMs can be adequately applied with both an increased 
number of populations (e.g. upwards of ten subpopulations; Punt 
et  al.,  2018) and more complex population structures (e.g. natal 
homing; Vincent et al., 2017, 2020). However, robustness is likely 
dependent on accurate determination of population units and 
misalignment between true population boundaries and those 
assumed within the spatial assessment model may degrade IPM 
performance (Berger et  al. In Review). As noted, spatial models 
matched to the scales of population identification information, 
including observed heterogeneity in demographics, productivity 
or harvest, will likely provide the best possible performance by 
ensuring that assessment and management population boundaries 
match the available data on population structure. Ultimately, the 
“optimal” number of populations or areas to include in a spatially 
stratified IPM will be context dependent. Based on spatially ex-
plicit simulations of small pelagic fish, Punt et al.  (2018) demon-
strated that it is often better to err on the side of modelling too 
many populations than too few, as long as there is evidence for 
spatial heterogeneity in population demographics or productivity, 
but the sample size versus precision trade-off should be carefully 
considered. Additionally, complex movement patterns have often 
been considered too difficult to estimate (Goethel et  al.,  2011, 
2015b), but our results demonstrate that movement estimation 
may not be as problematic as previously envisioned.

Unlike spatially stratified IPMs, the assumption of a spatially 
continuous domain utilized in spatiotemporal models can bet-
ter account for the continuum of spatial structure observed in 
many species that do not exhibit truly discrete population units. 
However, spatiotemporal models rely on fine-scale data collec-
tion, particularly from fishery-independent surveys of abundance 
(Cao et  al.,  2020), which are not available for many species and 

may be recorded at very coarse spatiotemporal scales for histori-
cal data (Berger et al., 2017). Spatiotemporal models may also have 
trouble interpreting fine-scale spatial variability in fishery catch 
rate data (Mormede, Parker, & Pinkerton, 2020). Despite the lim-
itations, spatially explicit IPMs are powerful tools that are able to 
better account for the observed spatial variability of harvested 
populations compared to spatially aggregated models that ignore 
fine-scale population dynamics (Berger et al., 2017). We envision 
that application of both spatiotemporal and spatially stratified 
modelling approaches will lead to co-evolution of methods for 
modelling spatial population processes (e.g. incorporating spatial 
autocorrelation approaches from spatiotemporal models into spa-
tially stratified IPMs). Increased implementation of cross-model 
simulation testing (e.g. using spatiotemporal OMs and applying 
spatially stratified IPMs) may further elucidate spatially explicit 
IPM performance, while general robustness testing of spatial IPMs 
could be improved by utilizing agent-based OMs that demonstrate 
emergent population properties based on individual-level mecha-
nistic dynamics of both the resource and harvesters.

Ultimately, the primary benefit of spatial IPMs (irrespective of 
underlying model structure) is the ability to incorporate disparate 
data types that span various spatiotemporal scales, which can then 
be fit within a unified estimation framework that allows modelling 
population dynamics across a species’ range (Regehr et al., 2018; 
Saunders et  al.,  2019). Data are thus fit closer to the spatial 
scale of collection, which helps overcome sample size limitations 
across the spatial domain (Cao et al., 2020; Goethel et al., 2011). 
Additionally, integrated models are amenable to incorporation 
of a variety of auxiliary data sources (e.g. tagging data), which 
often enhances the performance of spatial IPMs (Figure S11; 
Goethel et al., 2019; Maunder & Punt, 2013). However, an array 
of alternative spatially explicit data sources exist that are often 
underutilized, even though they could help inform distributional 
shifts, levels of movement among population units and variabil-
ity in mortality across the species range. For instance, genetics 
(e.g. population composition, close-kin mark–recapture and envi-
ronmental DNA; Bravington et al., 2016; Yamamoto et al., 2016), 
drone surveys and satellite imaging (Lowerre-Barbieri et al., 2019), 
and vessel monitoring systems (i.e., to track fishing vessel harvest 
locations; Gerritsen & Lordan, 2011) can all be incorporated into 
IPMs. Similarly, citizen-science data and stakeholder traditional 
environmental knowledge (TEK) can be utilized to inform priors or 
parametrize models (Lopes, Verba, Begossi, & Pennino, 2019; Sun, 
Royle, & Fuller, 2019). Spatially explicit IPMs can also account for 
scale dependencies in population dynamics (Goethel et al., 2011; 
Plard et al., 2019). For instance, biophysical individual-based mod-
els, which account for larval drift via fine-scale ocean circulation 
models, can be imbedded directly in an IPM (e.g. Archambault 
et al., 2016) to better address the spatial dynamics of early life-his-
tory stages. As technology continues to evolve and bio-logging 
data become more widespread, IPMs must adapt to better utilize 
these unique data sources, which should lead to improved feasibil-
ity of implementing spatially explicit IPMs.
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5  | CONCLUSIONS

Accounting for the impacts of climate change on species produc-
tivity and movement represents a major challenge for population 
models. Our results indicate that spatially stratified IPMs are able 
to estimate age- and time-varying connectivity due to climate-in-
duced and ontogenetic movement even with little a priori knowl-
edge regarding mixing levels or connectivity pathways. However, 
the biological complexity assumed in our simulation study was 
greatly simplified compared to observed dynamics for many ma-
rine fish populations and we incorporated only limited process 
error. Yet, based on our results and those of previous simulations 
with spatial IPMs, it is expected that, in most instances where 
spatial dynamics are present, spatially explicit IPMs are likely to 
outperform spatially aggregated counterparts. Caution is advised, 
though, when attempting to generalize these results to a real-world 
case study without first developing tailored operating models and 
associated simulations (Goethel et al., 2016). Application of spatial 
IPMs requires careful model development and validation to better 
understand the critical population processes influencing a given 
system, as well as the interactions among populations units (Kerr 
& Goethel, 2014). Additionally, as environmental conditions con-
tinue to rapidly transform due to climate impacts, implementing 
spatially stratified models that can adequately account for chang-
ing species distributions will likely require incorporation of alter-
native data sources to help estimate the magnitude and direction 
of redistribution. A variety of spatially explicit data sets exist for 
marine species and the onus now lies with population modellers 
to determine approaches to better incorporate available spatial 
data into IPMs (Crossin et al., 2017; Lowerre-Barbieri et al., 2019; 
Plard et  al.,  2019). It is unlikely that any single spatial modelling 
approach will be able to address the array of spatial dynamics 
observed in animal populations, while also being able to incorpo-
rate the increasing number of fine-scale data sets being collected 
(Berger et al., 2017; Cadrin, 2020; Mormede et al., 2020). Cross-
framework spatial applications will likely be required to maximize 
the information content of observed data, while incorporating the 
multiscalar spatial processes detected in real-world populations 
(Berger et al., 2017). We envision that co-development and inte-
gration of spatiotemporal and spatially stratified approaches may 
help overcome the limitations of either approach applied indepen-
dently, as well as the limitations associated with simply ignoring 
spatial structure (as is typically done in IPMs of marine resources), 
and will lead to important advances in spatial ecology.
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